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Introduction 

 

Using my eyes, I can see that a computer screen is there. With my eyes shut, I can see that the 

conclusion of a syllogism follows from the premises. The first ‘see’ has a specifically visual 

sense, the second an intellectual sense, but the dead visual metaphor indicates some similarity 

between the two cases. At the very least, in one I come to know that a computer screen is 

there, in the other I come to know that the conclusion follows from the premises, in the same 

unspecific sense of ‘know’. Yet many philosophers claim a deep difference between the two 

cases: whereas I know that a computer screen is there a posteriori, I know that the conclusion 

follows from the premises a priori.1 On the standard philosophical use of ‘a priori’ and ‘a 

posteriori’, those classifications may be correct. But that does not show that the difference 

goes deep. A toy analogy: we correctly classify some bicycles as red, and others as not red, 

but that does not show that there is a deep difference between red bicycles and non-red 

bicycles. More seriously: an attempt to define ‘races’ by artificial DNA-based criteria might 

somehow succeed in partitioning all humans into a few mutually exclusive, jointly exhaustive 

classes, yet reveal nothing of deep theoretical significance. 

 The traditional one-liner about the difference between the a priori and the a 

posteriori: a priori knowledge is independent of experience; a posteriori knowledge depends 

on experience. Of course, in the usual sense of ‘experience’, both seeing that a computer 

screen is there and seeing that the conclusion follows from the premises are, in their own 

small way, experiences. Without them, I would not have known those truths, or at least would 

not have come to know them in the way I actually did. Thus friends of the a priori/a 

posteriori distinction (henceforth, ‘the Distinction’) must do theoretical work to clarify what 

they mean by ‘experience’ and ‘depend’, or else explain the Distinction in other terms, to 

make it deliver the outcomes they want. I will not discuss such attempts in detail here. 

Instead, I will focus on a standard paradigm of a priori knowledge, and show how similar it 

is epistemologically to some paradigms of a posteriori knowledge. Although one can still 

draw a theoretical line between the two classes, it fails to mark a boundary of much 

epistemological significance; it does not cut at a cognitive joint. 

 The point is not that the Distinction has borderline cases. Most useful distinctions 

have those. What shows the distinction between red bicycles and non-red bicycles to be 

superficial is not a bicycle that is neither clearly red nor clearly non-red, but rather making a 

clearly red bicycle clearly non-red just by painting it green, changing nothing important. 
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Analogously, I will focus on similarities between clear cases of a priori knowledge and clear 

cases of a posteriori knowledge. 

 

 

Example 

 

A central kind of a priori knowledge is knowledge based on logical or mathematical proof. 

Unless such cases normally fall under the category of a priori knowledge, it risks being too 

sparsely inhabited, too marginal, to matter much. The Distinction’s true friends should be 

willing to maintain that proof-based knowledge is normally a priori. 

 Here is an example. Late one night, a mathematician has an idea for a proof of a new 

theorem, the mathematical statement M. She hurriedly writes it down. The argument is long 

and complex. She is unsure whether it is correct; she does not yet know the truth of the 

theorem. The putative proof needs to be checked. Having written it down, exhausted, she 

decides to leave the work of checking it until she is fresh after a night’s sleep. The next 

morning, she painstakingly goes through the proof Π, checking each step, and verifies its 

correctness by normal mathematical standards. She now knows that Π is a (correct) proof of 

M, and thereby knows M itself. This is an ordinary instance of knowledge based on 

mathematical proof. As just explained, friends of the Distinction will count her as knowing M 

a priori. Moreover, she knows M by knowing that Π is a proof of M. In some simple cases, 

one might know a mathematical truth just by proving it, without ever thinking about the 

proof, but in trickier cases—like this one—reflection on the proof itself is epistemologically 

crucial. For the mathematician to know M a priori by knowing a posteriori that Π is a proof 

of M would be bizarre, and already evidence that the Distinction cuts at no joint. Anyway, 

that Π is a proof of M is itself a mathematical fact; proof theory is a branch of mathematical 

logic. I will assume that friends of the Distinction count the mathematician as knowing a 

priori that Π is a proof of M. I will focus on her a priori knowledge of the proof.  

 What does the mathematician do when she checks the proof? For clarity, we may 

assume that her checking is unusually minute and meticulous, by ordinary mathematical 

standards. For instance, she looks at a passage written in her notebook, and verifies that it 

constitutes a genuine instance of modus ponens, where she makes a transition from premises 

‘If A, C’ and ‘A’ to a conclusion ‘C’ (which she knows to be truth-preserving). She can do 

this because she can recognize an instance of modus ponens when she sees one, in her own 

language (she would not recognize an instance in an unfamiliar language, with a word she did 

not understand instead of ‘if’). Her ability to recognize such an instance of modus ponens 

when she sees one is a perceptual recognitional capacity. It involves a form of pattern 

recognition, like a chess grandmaster’s recognition of an abstract pattern in the layout of the 

pieces on a board. Probably, she can also recognize an instance of modus ponens when she 

hears one, though that is not quite the same skill (it depends on aural memory, especially 

when intervening material separates the premises and conclusion); the chess grandmaster 

may be unable to recognize the pattern of pieces by touch (a black pawn and a white pawn 

feel the same). Naturally, a visual-recognitional capacity for modus ponens is selective; it 

ignores many aspects of what is seen. But the same holds of visual-recognitional capacities 

for shapes and colours too. 
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The mathematician’s visual recognitional capacity enables her to see that an instance 

of modus ponens is written there. Since her attention is less on where it is written than on 

whether it is a genuine instance of modus ponens, we might more relevantly describe her as 

seeing that this is an instance of modus ponens. But her knowledge that an instance of modus 

ponens is written there and her knowledge that this is an instance of modus ponens derive 

from the same underlying visual recognitional capacity. In the latter knowledge, the 

demonstrative ‘this’ is perceptual: its reference is fixed by her visual attention, just as the 

reference of the perceptual demonstrative ‘there’ in the former knowledge is fixed by her 

visual attention to a place on the page. Such recognitional capacities are likely to have been 

learnt and calibrated in sense perception, perhaps by trial and error—through experience, one 

might say—and so owe much of their reliability to sense perception, however they are 

subsequently applied. For logically significant patterns, such as modus ponens, the learning 

may have been fused with language learning, of logically significant words such as ‘if’. 

 Uncontroversially, the mathematician cannot know a priori that an instance of modus 

ponens is written there; she must know it a posteriori. Nevertheless, might her knowledge 

that this is an instance of modus ponens somehow count as a priori, even though the 

reference of the demonstrative is fixed by her visual attention? Perhaps, but that would 

support my claim that paradigms of a posteriori knowledge are very similar to clear cases of 

a priori knowledge. 

 Friends of the Distinction may complain that my emphasis on the written form of the 

proof is a red herring, because in principle the mathematician could verify the whole proof in 

her head. Is that a good response? 

 The qualifier ‘in principle’ is a euphemism for a huge idealization. Many proofs in 

mathematics are far too long and complex for anyone to hold in their head as a whole. Even if 

each individual step can be entertained in the head, verifying a proof also involves checking 

that the individual steps all fit together properly into a proof of the required conclusion. It is 

unclear how one could do that without some lasting record of the proof’s individual 

components, such as writing makes available. For long proofs, human memory is 

insufficiently reliable. 

 The epistemology of vision is sometimes claimed to be irrelevant to seeing a proof, 

since hallucinating it would do just as well. That might have some plausibility for individual 

steps, but not for the proof as whole. If you had just gone through a written proof, making 

painstaking checks, and then were told that you had been hallucinating half the time, you 

would be in no position to say ‘It doesn’t matter, I still have a valid proof’. You would not 

know whether all the individual steps fitted together properly into a proof of the conclusion.   

Of course, we can schematically imagine super-humans whose consciousness is vastly 

more capacious than our own, enabling them to take in and verify the proof in a single act of 

consciousness. But if our own knowledge of the theorem depends on sense perception, so 

does any knowledge we may have that a superhuman could know the theorem independently 

of sense perception. 

 Another consideration is that mathematics is a collective enterprise. Proofs must be 

checkable by the community of mathematicians, just as experiments in natural science must 

be repeatable. One obvious mechanism for that is the refereeing process for articles to be 

published in mathematical journals. A mathematician’s solemn promise that he has a clear 
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proof in his head is not enough. A publicly available proof, checked by other mathematicians 

or a computerised proof-assistant, is the epistemological gold standard. 

 In those respects—surveyability and public checkability—a written proof beats one in 

the head. In other respects, a proof in the head is quite similar to one on paper. Visualizing an 

instance of modus ponens is the offline version of the online process of seeing the instance; 

they differ primarily in the source of the inputs. One uses a visual recognitional capacity 

online to recognize instances of modus ponens in what one sees; one can reuse the same 

recognitional capacity offline to recognize instances of modus ponens in what one imagines. 

Similarly, expert chess players may use the same capacity for pattern recognition when they 

imagine a configuration on the board as when they see it on the board. Of course, in mentally 

rehearsing a proof, one is not confined to imagining formulas (as for modus ponens); one 

may also imagine diagrams. But an imagined diagram plays much the same role as one seen 

on a board, though many of us find the one drawn on the board clearer and more stable. The 

same underlying visual recognitional capacities are in play, online or offline (for related 

discussion see Carruthers 2015). The main advantages of doing mathematics in one’s head, 

when one can, are just that it is comparatively quick and convenient. 

 In short, to switch from going through a proof on paper to going through it in one’s 

head does not avoid reliance on sensory-perceptual skills. It is just a switch from relying on 

them online to relying on them offline. If that switch made the difference between a 

posteriori and a priori knowledge, the difference would be rather superficial, and mainly to 

the advantage of the a posteriori side. 

 Friends of the Distinction may try a different line, objecting that such arguments go 

wrong because they focus on the perceived forms of representations instead of the contents 

which they represent: a proof’s written form merely enables access to the real proof, a more 

abstract intellectual structure. 

 The trouble with that objection is that it neglects what formal proofs are for. A 

generally accepted requirement for a proof system to count as formal is that there should in 

principle be a mechanical procedure for determining of any given proof-candidate (a 

sequence or array of representations) whether it constitutes a correct proof in the system. Any 

such procedure can be implemented on a computer, given appropriate ways of scanning and 

coding proof-candidates (like Gödel numbering). Although it may be controversial whether 

the system’s basic axioms and rules of inference are sound on their intended interpretation, 

there should in principle be no additional controversy about the correctness of individual 

proofs in the system. Such a mechanical decision procedure for proofhood has to operate on 

formal aspects of proofs, not on their content. 

For example, suppose that the computer has to determine whether X, Y, and Z 

constitute an instance of modus ponens, with X the major premise, Y the minor premise, and 

Z the conclusion. In effect, it must determine whether X is the conditional with antecedent Y 

and consequent Z. For a language whose formulas are sequences of symbols from a finite 

alphabet, with conditional formulas written left-to-right (left parenthesis, antecedent, 

conditional symbol →, consequent, right parenthesis), the question boils down to whether X 

is the same formula as (Y→Z). That question is easy to answer for a computer attached to a 

suitable scanning device, with recognitional capacities for each symbol of the alphabet. By 

contrast, if the premises and conclusions of arguments were pure abstract contents, with no 



5 
 

such quasi-syntactic structure, it is quite unclear what could be meant by a ‘mechanical test’ 

for instances of modus ponens. Thus treating perceptible form as epistemologically irrelevant 

risks throwing away the very feature on which the epistemic value of formal proof depends. 

More generally, when one looks at a standard presentation of the rules in a system of 

natural deduction for a logic, one sees the introduction and elimination rules for the various 

connectives displayed as abstract visual patterns (modus ponens is the elimination rule for the 

conditional). Learning the rules partly consists in acquiring visual recognitional capacities for 

those patterns, which one can use both online in perception and offline in imagination. Such 

natural deduction rules are sound and complete for first-order logic and approximate well to 

the background logic of most ordinary mathematical reasoning. 

Of course, most proofs in working mathematics are not purely formal. Constructing 

and understanding them still requires pattern-recognition, but the patterns are typically 

‘macroscopic’ and specific to the relevant subfield (appeals to Church’s Thesis in recursive 

function theory are an extreme case in point) rather than ‘microscopic’ and general (such as 

modus ponens). Numerous short-cuts save time and space and prevent clogging detail from 

obscuring key ideas. Such proofs are written to be understood and checked by experts in the 

subfield, and are too informal to be checked by a computer; they may never get fully 

formalized. But we have no reason to expect such macroscopic pattern recognition to depend 

any less on forms of representation than does microscopic pattern recognition; it just depends 

on forms of representation perspicuous for macroscopic patterns. Moreover, when doubts 

about a proof intensify, it may require scrutiny at increasingly microscopic levels. 

Mathematics faces a growing problem with proofs so long and intricate that even 

leading experts in the subfield cannot be confident whether the proofs are correct just on the 

basis of checking them ‘by hand’, let alone ‘by brain’. In response, there is a growing trend 

towards computer-assisted proofs, where human mathematicians interact with computer 

assistant programs: the human enters raw definitions and sub-proofs, the program gives 

prompts whenever it finds a definition unclear or a step unobvious, the human provides 

clarifications or intermediate steps, and so on. After several months of such work, a very 

difficult proof-sketch by the Fields medallist Peter Scholze of an important new theorem was 

recently verified (Castelvecchi 2021). Thus formal standards of proof continue to play a key 

epistemological role in contemporary mathematics. Naturally, mathematicians hope to 

simplify and streamline complex proofs to make them more humanly intelligible, but it is an 

open question how far such hopes can be realized. In any case, if one treats the overt form of 

mathematical representations as epistemologically irrelevant, it is hard to explain the role of 

formal proof as a standard to which ordinary mathematical proofs are in principle held. How 

is a computer supposed to check a proof consisting of pure contents with no quasi-syntactic 

form? In short, form is crucial to mathematical proofs, from the simplest and most 

elementary to the most complex and advanced. 

 The illusion that overt syntactic form is irrelevant to an underlying ‘pure’ proof may 

result from the arbitrariness of basic logical and mathematical symbols. For instance, what 

symbol one uses for the conditional matters little. Although ‘→’ seems rather perspicuous for 

its meaning, most ordinary mathematical proofs use a natural language conditional; for 

mathematical purposes, English ‘if’ is neither better nor worse than Italian ‘se’. Let us extend 

the term ‘language’ to whatever system of representation (formal or natural language, 
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mathematical notation, diagrams, …) is used in a proof. Since mathematical proofs can so 

often be translated from one language into another without mathematical loss or gain, one 

might get the impression that the language is irrelevant to an underlying language-free proof. 

But that would be a fallacy. For although no particular language is needed for a given type of 

proof, it does not follow that such a proof can work with no language at all. Analogously, if a 

story can be told in any natural language, it does not follow that it can be told without use of 

language. Thus, when we consider the epistemology of proof, we must not treat the language 

as something to be factored out. Its perceptible or imaginable presence is crucial, even though 

many different languages will do equally well. Without some language or other, we cannot 

even ask mathematical questions, let alone reason our way to an answer.2 

 One manifestation of the centrality of linguistic form to proof is in the role of free 

variables, ubiquitous in mathematics. For example: where ‘x’ and ‘y’ are distinct variables, 

we cannot derive C from Fx and Fy → C by modus ponens, even though the variables do not 

differ in non-linguistic content. In assessing this inference, exhortations to attend to its 

content, not its form, would merely confuse the issue. 

 The centrality of representational form is not confined to proof checking. It is central 

to proof construction too. The idea for a proof often comes itself from recognizing a pattern, 

in formulas, a diagram, or whatever, and the proof may be developed by manipulating such 

patterns, playing with them. Anyway, proof construction is not a separate process from proof 

checking. As the overall proof is constructed, the mathematician will be continually checking 

proofs of lemmas, steps towards the final destination. 

 I have not argued that logical and mathematical proofs yield only a posteriori 

knowledge. If some philosophers want to stipulate that knowledge based on logical or 

mathematical proof is simply paradigmatic of a priori knowledge, let them. For all that, the 

knowledge was obtained through exercise of the same recognitional capacities through which 

we can also obtain paradigmatically a posteriori knowledge. 

 

 

Evolutionary considerations 

 

We should not be surprised that paradigms of a priori knowledge involve ordinary 

perceptual-recognitional capacities, used in special ways, online or offline. What else would 

one expect on evolutionary grounds? How much does knowledge of formal logic, 

mathematics, or philosophy increase one’s chances of surviving to breed successfully and 

pass on one’s genes? A special cognitive capacity dedicated to the a priori—for instance, a 

sui generis capacity to have intellectual seemings of necessary truth—would not pay its 

evolutionary way. Extra brainpower costs energy. A far more plausible explanation of the 

human capacity for a priori knowledge of formal logic, mathematics, and philosophy is that 

we do it by ingeniously applying our ordinary cognitive capacities for purposes they never 

evolved to serve, for instance in ways just sketched. 

 Of course, such evolutionary considerations are not decisive. Not everything has an 

evolutionary function. There are spandrels, mere by-products of something else which did 

serve an evolutionary function. Perhaps a special cognitive faculty dedicated to the a priori 

came along for the ride with the easiest evolutionary means to develop some fitness-
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increasing feature. But the spandrel hypothesis is at a disadvantage, compared to an account 

like that above. We do better to explain a feature of human cognition by its evolutionary 

function than by postulating it to be a by-product of something else in some unspecified way. 

 Clearly, many human cognitive achievements are to be explained culturally rather 

than biologically. Such explanations can still avoid evolutionary implausibility, for example 

by showing how human communities found and developed new ways to use their basic 

cognitive capacities. 

Knowledge by proof is a case in point. The traditional medium of proof in logic and 

mathematics is distinctively human: language, aided by diagrams and symbols. Properly to 

keep track of complex proofs, writing is needed. Formal proof may go back no further than 

Euclid, though less formal proofs came earlier. Geometry itself originated with techniques for 

solving practical problems: if you can measure the sides of a field, and thence calculate its 

area, you can estimate the crop yield. Until the nineteenth century, the intended subject 

matter of geometry was the structure of physical space; that was why the consistency of non-

Euclidean geometries felt so threatening. Of course, as a branch of contemporary 

mathematics, geometry studies abstract structures, whose relation to physical space it leaves 

to physics. But mathematicians still use what are in effect spatial metaphors as powerful 

means for understanding abstract structures. One sign of that is the role of diagrams in 

mathematical proof, highly valued by most mathematicians, which recruits their general 

abilities in spatial reasoning and manipulation for more abstract purposes (see for example 

De Toffoli 2017). In doing so, they have learnt how to avoid reading more into spatial 

diagrams than they are meant to represent. The development of such mathematics by 

intelligent language-using creatures with evolved capacities for spatial reasoning and 

manipulation is not utterly mysterious. 

 One might say: formal proofs in logic stand to informal verbal reasoning as formal 

proofs in geometry stand to informal spatial reasoning, with similarities in their historical 

development. However, even logic has a spatial aspect, introduced both by the need for 

writing to keep control of complex proofs and by the use of diagrams in more mathematically 

sophisticated logic. 

 Our ability to reason in our heads as well as on sand, paper, or board is part of a 

general human capacity to work offline, in the imagination, as well as online, interacting with 

what we sensorily perceive. Our cognitive capacities can typically be used both online and 

offline. Our capacity to work offline has significant practical value. In decision-making, we 

have to judge what will or may happen if we select a particular option: the natural way for us 

to determine that is by imagining selecting that option and realistically thinking through the 

consequences. Usually, such consequences are causal rather than logical, and by no means a 

priori. But by suitably filtering the background knowledge and belief we use in developing 

the initial supposition, we can in effect restrict ourselves to logical or mathematical 

consequences, as in a proof. This is a limiting case of our general capacity for reasoning 

under a supposition. 

 These remarks are obviously just a beginning. But they suggest that there is no need 

to invoke a cognitive deus ex machina to provide special ingredients to cook up paradigms of 

a priori knowledge; the usual ingredients suffice. 
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 These challenges may tempt some simply to identify a priori knowledge with innate 

knowledge and a posteriori knowledge with acquired knowledge, assuming the scientific 

respectability of the innate/acquired distinction. However, that distinction is itself contested, 

on whether it can be defined scientifically and, if so, how (Griffiths 2020). Even if we put 

those concerns aside, it is not clear that the innate/acquired distinction will do what the 

Distinction is intended to do. For example, suppose that humans turn out to have an innate 

fear of snakes, for good evolutionary reasons (Kawai 2019). We may have innate knowledge 

that some snakes are dangerous. But do we really know a priori that some snakes are 

dangerous? More generally, on such views, the status of innate knowledge as knowledge 

depends on its evolutionary origins. In effect, it is a form of learning from interaction with the 

environment, at the level of the species rather than the individual. Even if that is not exactly 

the same as individual learning from perceptual interaction with the environment, friends of 

the Distinction may well feel that it is closer to paradigms of a posteriori knowledge than to a 

priori knowledge. Conversely, most mathematical knowledge is obviously not innate. This is 

clear for non-elementary mathematics, but even at the most elementary level, no 

recognitional capacity for modus ponens for ‘if’ is innate, since knowledge of English is not 

innate. According to Jerry Fodor (1975), we have a language of thought (Mentalese); there 

might even be an innate computational capacity to identify and accept instances of modus 

ponens for a conditional device in Mentalese, which somehow underpins human 

understanding of natural language conditionals. But the proofs we construct and check in 

logic and mathematics are not in Mentalese; they are in a formal language, or a mixture of 

natural language and mathematical notation. Thus the Distinction’s friends are likely to resist 

identifying a priori knowledge with innate knowledge and a posteriori knowledge with 

acquired knowledge.  

 

 

An illusion of depth 

 

If the Distinction is shallow, why should it seem deep? A cynical answer is that its apparent 

depth is an artefact of philosophical conservativism: the Distinction draws prestige from its 

role in the epistemological tradition, going back to Kant and beyond; those who hold it in 

respect naturally regard it as deep. But even if there is something to such cynicism, it is not 

fully convincing. As a matter of common experience, sense perception is not part of every 

thought process. That is no mere quirk of human psychology; for computers too, internal 

computation is standardly distinguished from inputting and outputting. These elementary 

considerations may suggest that there must in principle be a radical distinction between 

knowledge dependent on sense perception and knowledge independent of it. 

 Such a distinction may indeed be drawn, if one looks only at the final cognitive stage 

culminating in the formation of the knowledge or belief at issue. But a taxonomy based just 

on the final stage would be blatantly superficial. For example, if one sees a black swan and 

thereby comes to know that not all swans are white, the knowledge gets classified as by 

thought rather than by perception, simply because the final stage was a deductive inference. 

No friend of the Distinction wants that result. Thus the taxonomy must take into account 

more distant epistemic progenitors too. That is straightforward enough when they are simply 
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memories preserving relevant features of sense perception. But sense perception can also play 

a less overt role, sometimes by influencing which inferences one is disposed to make. For 

those who like the obscure term ‘intuition’, sense perception can influence which intuitions 

one is disposed to have. Analogously, inputs can modify a computer’s programme. In that 

case, there need be no input-independent outputs. 

 Does this amount to some form of empiricism, on which all knowledge and 

justification is a posteriori, perhaps on the lines sketched by Quine (1951)? Not at all. For 

empiricism characteristically minimizes the role of innate structure. If it cannot quite get 

away with positing an initial tabula rasa, it comes as close to that as it can, perhaps with an 

all-purpose Quinean similarity space for general inductive learning. By contrast, the present 

picture is consistent with richly differentiated innate structure, such as a Chomsky-style 

language module. Output may be highly sensitive to both inputs and a fixed cognitive 

architecture. Given such double sensitivity, the usual stereotype of the a posteriori is just as 

inept as the usual stereotype of the a priori. 

 The Distinction works well enough in an elementary introduction to epistemology, for 

a first-pass survey of the material to be understood. If we wish to go much deeper, the 

Distinction becomes an impediment to understanding.3 
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Notes 

 

 

1 For internalist epistemologists, the primary distinction is between a priori and a 

posteriori justification. The difference is not crucial for the present arguments. 

 

2 The inseparability of cognitive significance from representational form is arguably 

general, where even two synonyms differ in representational form (Williamson 

2022c). We can track it by ascribing attitudes under representational guises, such 

as sentences in contexts. Thus someone may know the same proposition a priori 

under the guise ‘Furze is furze’ and a posteriori under the guise ‘Furze is gorse’. 

For brevity and readability, I omit such qualifications. But an adequate account of 

a priori knowledge must reconcile it with the cognitive significance of the 

representational forms under whose guise we have such knowledge. 

 

3 I was first alerted to problems with the Distinction through reflection on the 

epistemology of counterfactuals (Williamson 2007: 165-9). I developed the 

argument further in Williamson 2013. See Boghossian and Williamson 2020 for 

an extended debate, and Casullo 2022, Williamson 2022a and Melis and Wright 

2022, Williamson 2022b for further exchanges. Many thanks to Joel David 

Hamkins, Daniel Kodsi, Jennifer Nagel, and audiences at the universities of 

Edinburgh, Lisbon, Rijeka, St Andrews, Texas Tech, and Turin (where it was 

given as the 2021 LLC Lecture) and the inaugural meeting of the British Society 

for the Theory of Knowledge at the 2022 Pacific Division meeting of the APA for 

useful questions and comments on earlier versions. 
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