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Abstract 

In mathematics, the deductive method reigns. Without proof, a claim remains unsolved, a 

mere conjecture, not something that can be simply assumed; when a proof is found, the 

problem is solved, it turns into a ‘result’, something that can be relied on. So mathematicians 

think. But is there more to mathematical justification than proof?  

 

The answer is an emphatic yes, as I explain in this article. I argue that non-deductive 

justification is in fact pervasive in mathematics, and that it is in good epistemic standing.  
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1. Introduction 

The focus of this survey article is on non-deductive justification in mathematics, by which I 

mean any kind of justification for p other than a proof of p.2 I shall argue that this sort of 

justification is pervasive, and that it is in good epistemic standing. My article is 

complementary to that by James Franklin in the present handbook (Franklin 2021a). His is 

more focussed on the practice side of things, mine more on the philosophical side. The two 

articles may profitably be read side by side.3   

 

                                                           
1 I am grateful to Michèle Friend for the invitation to contribute to this handbook and to Jim 

Franklin for helpful comments on a previous draft.   
2 Unless otherwise stated, p will be a mathematical proposition. 
3 It is worth noting that the present article is not committed to an objective Bayesian analysis 

in the way Franklin’s is. For all I say here, justificatory relationships between mathematical 

beliefs or truths may or may not be cashed out in Bayesian terms. And even if they are, this 

Bayesian analysis may or may not involve an objective form of probability. (Franklin 

mentions this last point on page 8 of his 2021a.)   



We begin in section 2 with a case study: the non-deductive evidence behind Goldbach’s 

Conjecture (GC). A famous conjecture in number theory first put forward by Christian 

Goldbach in a 1742 letter to Euler, it has much non-deductive evidence behind it but remains 

unsolved. Section 3 briefly looks at scepticism about the value of enumerative inductive 

evidence in arithmetic. What is the justificatory value of, say, verifying the first trillion 

instances of GC, all which are in some sense small? Section 4 ties the rise of non-deductive 

methods to the decline of the Euclidean ideal in mathematical epistemology. Section 5 

considers how one might justify the consistency of mathematics as a whole. The natural, and 

perhaps only, way to do so is by means of non-deductive evidence. We conclude in section 6 

by examining a radical suggestion: perhaps non-deductive evidence is enough for knowledge 

of a mathematical proposition. We expound one of the arguments for this suggestion.  

 

Right at the outset, we need to be clear that most mathematical justification, even knowledge, 

is testimonial, because it is acquired from other sources (people, books, journals, websites, 

social media, etc.). For example, I am justified in believing that Fermat’s Last Theorem is 

true because I have heard of its proof from various reliable sources.4 Testimonial justification 

is non-deductive because it is not based in any sense on a proof of your source’s reliability. 

Any evidence that Andrew Wiles is a reliable mathematician is partly but not strictly 

mathematical: it compares his mathematical pronouncements (an empirical matter) to the 

mathematical facts. And evidence that the media and personal channels through which I have 

heard of Wiles’s proof of Fermat Last Theorem’s are accurate is not strictly mathematical 

either.5 So most justification of a mathematical proposition p is non-deductive, even if the 

justification chain ends in a proof. That much is agreed on all hands. A more contested 

question concerns the extent and significance of justification that does not end in a proof 

because there is currently no proof to be had. It is this sort of justification that is our topic 

here.  

 

2. A case study: Goldbach’s Conjecture  

Franklin (2021a) illustrates the notion of non-deductive evidence in mathematics with several 

examples. Section 5 of his article notably presents some of the evidence for the presently 

unsolved Riemann Hypothesis. The present section does the same for GC.6  

 

Before we get to brass tacks, two notes on terminology. I prefer to talk about ‘the justification of 

mathematical statements’ rather than ‘mathematical justification’ as it might be insisted that properly 

mathematical justification must be deductive. As a matter of definition, one might insist, any 

justification for p that does not take the form of a proof of p is not mathematical, sensu stricto. I am 

not sure that’s right; but in any case, it’s a terminological fight not worth having, why is why I called 

my 2015 article on the subject ‘Knowledge of Mathematics Without Proof’ rather than 

‘Mathematical Knowledge Without Proof’.  

 

The second point is that the word ‘induction’ is multiply ambiguous. It has a procedural or 

ceremonial meaning (e.g. ‘induction into the Rock and Roll Hall of Fame’) and a physical meaning 

                                                           
4 Or at least from a preponderance of reliable sources. Fermat’s Last Theorem states that if  

an + bn = cn, where a, b, c and n are all positive integers, then n = 1 or 2.  
5 Calling it ‘Wiles’s proof’s is a simplification; as is well-known, Wiles’s original 1993 proof 

of Fermat’s Last Theorem contained a flaw. The 1995 patch-up is owed to Wiles and Richard 

Taylor.  
6 The material here draws significantly on p. 779 of my (2015). N.B. My survey of the non-

deductive evidence for GC is far from exhaustive.  



(‘electromagnetic induction’). Even setting these aside, it can mean (at least) three more things. (1) 

The first is an inference from particular instances to a generalisation. An induction is something of 

the form ‘A1 is F, …, An is F; therefore all As are F’.7 I shall reserve the term enumerative induction 

for this meaning. (2) The second is a broader sense: any non-deductive inference or any form of non-

deductive evidence. Bertrand Russell consistently used the word in this way, and I followed him in 

my (2015). But upon reflection, confusion is avoided and clarity promoted if we simply write ‘non-

deductive’ for ‘inductive’ in this sense. That will be my policy here.8 (3) In its third sense, it forms 

part of the expression ‘proof by mathematical induction’, i.e. a proof that all numbers have P by 

showing that 0 has P and that if n has P then n+1 also does. I shall not be concerned with induction 

in this sense.  

 

On to GC, then, which states that every even number greater than 2 is the sum of two primes. 

Number theorists are highly confident of GC’s truth on the basis of non-deductive evidence. What 

form does this evidence take?   

 

First, there is enumeratively inductive evidence for GC. Specifically, GC has been checked for every 

even number up to about 41018 and double-checked up to a number not much smaller.9  

 

Second, various slightly weaker claims than GC have been proved. An example is the ternary 

Goldbach Conjecture, that every odd number ≥ 7 is the sum of three primes. The Soviet 

mathematician Ivan Vinogradov proved in the 1930s that every sufficiently large odd number 

is the sum of three primes; in 2013, Harald Helfgott proved the ternary conjecture outright. 

Two more results in the same vein: (a) every sufficiently large number is the sum of a prime 

and either a prime or the product of two primes, and (b) every even number is the sum of no 

more than six primes. Both of these have been proved, so are bona fide theorems. The idea 

here is that if a slightly weaker claim than GC is proved, that makes GC more likely to be 

true. Note in passing that this illustrates our broad use of ‘non-deductive evidence for p’ to 

include proofs of statements distinct from p but related to it in some interesting way.  

 

This sort of justification exhibits the following pattern:10  

 

 A  B1, B2, …, Bn 

B1, B2, …, Bn all hold 

_________________ 

 

A gains in justification  

  

                                                           
7 Or even, in some cases, of the form ‘A1 is F, …, An is F, … ; therefore all As are F’, since 

we may know infinitely many instances. 
8 It is the sense of induction that is relevant to Hume’s problem of induction, i.e. the problem 

of justifying an inference from observed to unobserved cases. Some recent mathematical 

results are highly pertinent to this problem, as discussed in my (2011) and (2008).  
9 The latest results can be found on Tomás Oliveira e Silva’s website  

http://www.ieeta.pt/~tos/. 
10 Compare Mazur (2014, p. 25). Pólya (1956, 1968) is a classic early discussion of non-

deductive reasoning in mathematics.  

http://www.ieeta.pt/~tos/


Of course, ‘A  B, B; therefore A’ is a formal fallacy, known as Affirming the Consequent.11 

This is another way of saying that the bare formal bones of this sort of argument are non-

deductive.  

 

The schema can be further elaborated. For example, A gains more in justification the more 

consequences B1, B2, …, Bn are verified (i.e. the greater n is); the more varied and 

independent of one another B1, B2, …, Bn are; the ‘closer’ each of B1, B2, …, Bn is to A;12 the 

more of the B1, B2, …, Bn were discovered after conjecturing A and independently of that 

conjecture; and so on. 

 

Third, let G(n), the Goldbach number of n, be the number of different ways in which n can be 

written as the sum of two primes. GC can then be expressed as the claim for all even n greater 

than 2, G(n)  1. As Echeverría (1996) points out, computer evidence shows that the function 

G(n) broadly increases for even n as n increases (with oscillation, but with an increasing 

trend), so that for instance for even n  105, G(n)  500. In light of this evidence, that G(n) 

will suddenly drop to 0 is regarded as deeply unlikely.  

 

This third sort of evidence combines neatly with enumerative inductive evidence, because it 

suggests that smaller numbers are more likely to be counterexamples to be GC than larger 

ones.13 In the case of GC, there are therefore conjecture-specific reasons for thinking that the 

earliest cases are the ‘hardest’. GC, incidentally, is by no means unique in this respect. 

Another example is Legendre’s Conjecture, also currently unproved, which states that for 

every positive integer N there is a prime between N2 and (N+1)2. As in the case of GC, the 

enumerative inductive evidence suggests that not only is Legendre's Conjecture true, but also 

that the number of primes between N2 and (N+1)2 non-strictly increases with N. Incidentally, 

there are heuristic arguments for this conclusion too, of the sort we will shortly mention for 

GC. The Prime Number Theorem implies that the number of primes between N2 and (N+1)2 

is asymptotic to N/ ln N, a quantity which increases with N. So for Legendre's Conjecture, as 

for GC, smaller numbers are ‘hard’ cases—they are more likely to yield counterexamples 

than larger numbers.14  

 

Fourth, the ratio RN = 
1

𝑁
 . (numbers k  ≤ N such that G(2k) = 0) has been proved to tend to 0 as N 

tends to infinity. In other words, the density of counterexamples to GC is zero. Of course, if GC is 

true then RN is simply equal to 0 for all N.  

 

Fifth, Hardy and Littlewood’s formula for the asymptotic number of representations of  

 

                                                           
11 Or ‘modus morons’, as Haack (1976, p. 115) playfully calls it.  
12 For instance, the claim that every even number > 2 is the sum of six primes is closer to GC 

than the claim that every even number > 2 is the sum of ten primes. Needless to say, how to 

make precise sense of this notion of closeness is tricky.   
13 This example is also discussed by Baker (2007, pp. 69–70).  
14 There are other conjectures for which we have specific reason to believe that early cases 

are easy cases. An example is the conjecture that all perfect numbers are even. (A natural 

number N is perfect iff its factors sum to 2N.) Since Ochem and Rao (2012), we know that 

the smallest odd perfect number, if it exists, must be greater than 101,500. In this respect, such 

conjectures are diametrically opposed to GC and Legendre's Conjecture. 



N = p1 + … + pm,  

 

where p1 ≤ … ≤ pm are m primes, has been proved for m ≥ 3. If true for m = 2, it implies GC for 

sufficiently large even numbers. 

 

Sixth, a well-known heuristic probabilistic argument suggests the same conclusion. The Prime 

Number Theorem states that the number of primes up to N tends to N/ln N asymptotically, i.e. the 

ratio of these two quantities tends to 1 as N tends to infinity (here ln N is the natural logarithm of N). 

Hence the number of distinct sums of primes no greater than 2N tends to ½.(N/ln N)2. (We divide by 

two because each sum, with the possible exception of N+N, appears twice.) Thus the typical even 

integer smaller or equal to 2N can be written as the sum of two primes in about ½.(N/ln N)2/N= 

½.N/ln2 N  ways, a quantity that increases with N.15
 

 

This last argument is admittedly very rough and ready, and, to stress, heuristic rather than 

demonstrative. But it can be improved to yield much better estimates that point to the same 

conclusion: the greater N is, the greater G(N) is likely to be. Such arguments remain 

heuristic—GC has not been proved—but they make it plausible that the first counterexample 

to GC, if one exists, will be a ‘small’ number. These sorts of arguments are much more 

convincing than one might initially think: if the numerical facts did not follow the 

probabilistic expectation, the thought goes, there would be some totally unknown 

mathematical phenomenon that would cause the deviation—and there is no reason to expect 

this.  

 

On the basis of this and other evidence—our list is illustrative rather than exhaustive—

mathematicians are close to certain of GC’s truth. The non-deductive evidence behind GC is 

justification for its truth, even in the absence of proof. One might say that the truth of GC best 

explains this wide range of evidence, and therefore that we should infer its truth on this basis.16 

 

In illustrating some of the non-deductive evidence for GC, we have taken into account the strictly 

mathematical evidence for it. This is, if you like, the first-order evidence for GC. But for any given 

p, such as GC, there is also higher-order evidence for p: the evidence that consists of what other 

mathematicians make of this first-order evidence for p. To determine how much the evidence 

supports p, mathematicians also take each other’s judgements into account. In any real-life situation, 

a mathematician’s judgement of how much the mathematical evidence supports p will also depend 

on what other mathematicians make of the same question. When you think about how likely p is to 

be true, your peers’ judgements also matter. 

 

This last point interestingly complicates the picture of mathematical justification, and applies to 

proof-based and non-proof-based justification alike. We will not dwell on it further here, but simply 

note that the sum-total of the non-deductive evidence for p includes experts’ judgements.  

 

3. Scepticism about enumerative induction 

The first sort of evidence for GC mentioned in the previous section consists of the first  

                                                           
15 The argument seems to be mathematical folklore. 
16 Lange (2022) discusses inference to the best explanation in mathematics.  



4×1018 verified instances of GC. In the absence of supporting reasons, mathematicians may 

mistrust such evidence for arithmetical generalisations, more so than most other forms of 

non-deductive evidence. Some philosophers have also expressed scepticism about the value 

of enumerative inductive evidence in arithmetic.  

 

Why? The reason usually given is that known instances of an arithmetical conjecture are 

almost always small.17 For example, in the case of GC, the evidence is potentially biased, as 

it consists only of the first 4×1018 natural numbers. Since the size of a natural number 

significantly affects its properties, our enumerative inductive evidence seems biased with 

respect to size.  

 

Following Frege (see §10 of his 1884), Alan Baker has given voice to this sort of scepticism. 

In an article devoted to the subject, he concludes with the following normative and 

descriptive point (about arithmetic): mathematicians ought not and in general do not ‘give 

weight to enumerative induction per se in the justification of mathematical claims’ (2007, p. 

72). But following other writers, Baker allows that circumstantial reasons can come to the 

rescue of an enumerative induction, in arithmetic as well as elsewhere in mathematics.  

 

We limit ourselves to making three quick points against the sceptic, which a more expansive 

treatment would develop. The first point, already made in section 2, is well-appreciated by 

Baker and is worth stressing. In several cases, we have good reason to think that early cases 

are hard cases. We mentioned GC and Legendre’s Conjecture as examples. For these 

conjectures, small cases may be biased, but they are favourably biased: they are the cases 

most likely to yield a counterexample. If no such counterexample is found among them, the 

conjecture has passed an important test, like a climber who has got past the steepest part of 

the mountain face. As a result, confidence that all remaining cases fall in line can reasonably 

increase.  

 

In the case of GC, the evidence for thinking that early cases are hard cases is, of course, 

partly based on enumerative induction. However, unless one is an out-and-out sceptic about 

enumerative induction, the circle here is virtuous. Enumerative inductive evidence is 

deployed to show that, so far as GC is concerned (say), the size bias works in favour of 

someone deploying enumerative inductive evidence to confirm it. In any case, as we also saw 

in section 2, a heuristic argument also points to the same conclusion.  

 

A second and related point, also acknowledged by Baker, was implicit in section 2. The 

situation in which all we have is enumerative inductive evidence is a rare one. Almost 

always, this evidence is accompanied by other sorts of non-deductive evidence. Section 2 

detailed some of that accompanying evidence in the case of GC.  

 

The third point is that the viability of this sort of ‘size-scepticism’ depends on what’s 

motivating it. In a recent article (Paseau 2021), I distinguished three sorts of size-sceptics and 

                                                           
17 We say ‘almost always’ because, for example, one could have an argument that all odd 

numbers satisfy some arithmetical property. That would constitute enumerative inductive 

evidence for the claim that all numbers (odd and even) have that property. But the evidence 

would consist of infinitely many cases, which could not all be said to be small.  



pointed out that some are better motivated than others. In particular, some are better able to 

respond to the following frontloading argument.18  

Let E, a finite subset of the natural numbers, consist of our enumerative inductive evidence 

for a particular arithmetical conjecture. In other words, E is the set of known instances of a 

generalisation over the natural numbers. Let the function v be our evidential function, 

with domain all finite subsets of the natural numbers. We assume only that v’s codomain is 

the closed unit interval [0, 1] with the usual order; the higher v’s value in [0, 1], the stronger 

the evidence. Evidential values may be thought of as measuring the subject’s rational degree 

of confidence in the generalisation in question, though without commitment to the whole 

panoply of probabilistic ideas. 

 

Consider next the following, presumably uncontroversial, evidential principle: 

 

More is Better 

If n is not in E then v(E  {n}) > v(E). 

 

As its name indicates, More is Better simply captures the idea that more evidence is better 

than less; so the evidential value of more evidence is greater than that of less. Next, define l = 

limn→∞ In, where In = v({0, 1, · · · n}). By More is Better, if m < n then Im < In; and since 1 is 

an upper bound for the In, the limit l exists. The real number l itself, of course, may be 1 or 

smaller than 1, but it has to be greater than 0 (by More is Better). So we deduce that 0 < l ≤ 1. 

Now by the definition of a limit, for any   > 0, however small, there is an N such that for 

any N∗ ≥  N, IN* is to within  of l.  

 

Here’s another way of putting it: for  is chosen to be much smaller than l − , almost all the 

evidential value stems from the first N instances of the enumerative induction. The 

remaining instances add very little evidential value.  The evidential value of any finite 

amount of numerical instances is therefore concentrated almost entirely in an initial segment. 

Whatever arithmetical conjecture you wish to test, the value of further instances beyond some 

finite bound (depending on the conjecture) will be vanishingly small. An initial segment 

provides the lion’s share of the confirmation.  

 

The conclusion of this remarkably simple argument appears to contradict size-scepticism. 

Paseau (2021) discusses in detail which forms of size-scepticism are genuinely affected by it. 

The conclusion there is that some are but not all.   

 

4. The Last Bastion of the Euclidean Programme 

What is the structure of mathematical justification? The traditional picture is foundationalist. 

More specifically, it is a form of foundationalism largely inspired by Euclid’s geometrical 

                                                           
18 The following adapts the first few paragraphs of section 5 of Paseau (2021). In section 4 of 

that article, I distinguish three types of size sceptic. (1) The c-sceptic believes that an 

inference based on a sample is (in this respect) weaker than an inference based on another 

sample that contains larger instances than the first. (2) The s-sceptic believes that an 

inference based on a sample consisting only of small instances is (in this respect) weak 

precisely because the instances are small. (3) The u-sceptic believes that an inference based 

on a sample consisting only of small instances is (in this respect) weak because the instances 

are small and therefore unrepresentative. Objections to size scepticism affect these three 

forms in different ways. Section 7 of Franklin (2021a) also discusses size scepticism.  
 



method in The Elements (c. 300 BC). So what was Euclid’s method? Starting from some 

definitions, postulates and common notions, Euclid derives the geometry of his day theorem 

by theorem, in a cumulative manner over the course of 13 books. A concise summary of what 

he calls the Euclidean Programme is given by Imre Lakatos in the following passage, where 

he contrasts it with the Empiricist Programme: 

 

The Euclidean programme proposes to build up Euclidean theories with foundations 

in meaning and truth-value at the top, lit by the natural light of Reason, specifically 

by arithmetical, geometrical, metaphysical, moral, etc. intuition. The Empiricist 

programme proposes to build up Empiricist theories with foundations in meaning and 

truth-value at the bottom, lit by the natural light of Experience. Both programmes 

however rely on Reason (specifically on logical intuition) for the safe transmission of 

meaning and truth-value. (Lakatos 1962, p. 5) 

 

The most obvious way to spell out the Euclidean Programme would be to base it on what 

Euclid himself has to say about it in The Elements. But that would give us very little to go on, 

because Euclid offers us no philosophical gloss on his method, as many commentators down 

the ages have noted.  

 

Lakatos offers us more. He characterises the Euclidean Programme as follows:  

 

I call a deductive system a ‘Euclidean theory’ if the propositions at the top (axioms) 

 consist of perfectly well-known terms (primitive terms), and if there are infallible 

 truth-value-injections at this top of the truth-value True, which flows downwards 

 through the deductive  channels of truth-transmission (proofs) and inundates the whole 

 system. (If the truth-value at the top was False, there would of course be no current of 

 truth-value in the system.) Since the Euclidean programme implies that all knowledge 

 can be deduced from a finite set of trivially true propositions consisting only of terms 

 with a trivial meaning-load, I shall call it also the Programme of Trivialization of 

 Knowledge. Since a Euclidean theory contains only  indubitably true propositions, it 

 operates neither with conjectures nor with refutations. In a fully-fledged Euclidean 

 theory meaning, like truth, is injected at the top and it flows down safely through 

 meaning-preserving channels of nominal definitions from the primitive terms to the 

 (abbreviatory and therefore theoretically superfluous) defined terms. A Euclidean 

 theory is eo ipso consistent, for all the propositions occurring in it are true, and a set 

 of true  propositions is certainly consistent. (Lakatos 1962, pp. 4–5) 

 

Now in this passage Lakatos speaks of truth (and meaning) injection; but this is somewhat 

misleading. The Euclidean Programme represents an epistemological conception, and the 

hierarchical path from axioms to theorems is a path the subject, as opposed to reified truth, 

follows. The flow-of-truth metaphor is better construed as transmission of an epistemic good 

of some sort, such as justification say. The picture is then a foundationalist one in which one 

gains justification for axioms first and thence for theorems by inferring them from the 

axioms.  

 

Historical proponents of mathematical epistemologies that, to one or degree or another, 

approximate the Euclidean conception are many and varied. Its high point came in the 

seventeenth century; see in particular Pascal’s posthumous On the Geometric Mind (written 

in the late 1650s) or even Descartes’ Discourse on Method (1637). For various reasons, the 

Euclidean Programme is no longer tenable as a mathematical epistemology for all 



mathematics. Paseau and Wrigley (2023) explains the reasons why for the case of set 

theory.19 In brief, the standard axioms of set theory are no longer generally regarded as self-

evident; at least, not all of them are. And deductive rules that take us from theorems to 

axioms are also not thought to be certainty-preserving, or even rational-credence-preserving. 

On top of that, the Euclidean Programme’s ideal of completeness is also, post Gödel, not 

realisable. Any reasonable axiomatic organisation of set-theoretic truths in a deductive 

system will omit some of them.  

 

Arithmetic much more closely approximates the Euclidean picture than set theory does.20 The 

justification of its axioms is, it might be said, more intrinsic than extrinsic. To explain this 

distinction: extrinsic evidence for a principle to consist in its instrumental value, in drawing 

consequences, forging connections between different areas, making for better explanations 

and the like. This is the kind of evidence on which theoretical principles in science are 

mostly, if not exclusively, based. Intrinsic evidence we may take to be non-extrinsic 

evidence: the sheer obviousness or plausibility of a principle, as well as how it fits with the 

broader conception of the subject matter. 

 

In any case, one of the Euclidean Programme’s tenets that’s still very much standing is that 

deduction is prized as the highest form of justification available for a mathematical 

proposition and regarded as necessary for knowledge. In fact, in some quarters, deductive 

justification is thought to be the only available form of justification; and for many, non-

deductive justification pales in comparison to the real McCoy: proof. To challenge these sorts 

of proof-centric ideas, or at least weaken their hold, is thus to challenge one of the last 

bastions of Euclideanism. 

 

Friends of non-deductive reasoning in mathematics will find what Lakatos called the 

Empiricist Programme much more congenial than the Euclidean one. This post-Euclidean  

outlook was perhaps first articulated by Russell, who drew a ‘close analogy between the 

methods of pure mathematics and the methods of the sciences of observation’ (1907, p. 272). 

On a thumbnail, the idea is this. We commonly conceive of natural-scientific propositions as 

being divided into two broad kinds: data and more theoretical principles, ultimately laws. On 

this (simplified) conception, the data are empirical propositions that we take to be the facts, 

and the principles/laws are propositions formulated in order to predict the facts. Indeed, the 

prediction of the data is the primary means of verifying these principles/laws. Whether or not 

the principles/laws are intrinsically plausible, to a first approximation we take them to be true 

if they predict all the data and don’t predict anything false.  

 

By analogy, mathematical axioms are supposed to be verified by ‘predicting’ mathematical 

propositions of some privileged kind identified as the data. Prediction here is simply 

deductive implication. The justification of these principles or laws would then be extrinsic. 

This is broadly Russell’s view of the matter, which he calls the ‘regressive method’. It plays a 

major role in his own foundational system; for example, in the Introduction to the first edition 

of Principia Mathematica, he (with Whitehead) had this to say about the controversial so-

called Axiom of Reducibility:  

 

 That the axiom of reducibility is self-evident is a proposition which can hardly be 

 maintained. But in fact self-evidence is never more than a part of the reason for 

                                                           
19 The present section overlaps with some material in that book.  
20 As discussed in section 5 of Franklin (2021b) for example.  



 accepting an axiom, and is never indispensable. The reason for accepting an axiom, as 

 for accepting any other proposition, is always largely inductive, namely that many 

 propositions which are nearly indubitable can be deduced from it, and that no equally 

 plausible way is known by which these propositions could be true if the axiom were 

 false, and nothing which is probably false can be deduced from it. (Whitehead and 

 Russell 1910/1962: 59–60) 

 
It is essential to the Empiricist Programme that certain propositions are identified as being 

data, and that these have a special epistemological status which explains their role in the 

programme. Various manifestations of the Empiricist Programme will have different ideas 

about which propositions are properly classified as data, or which propositions are lit by the 

natural light of experience. Plainly, not just any mathematical truth can be considered a 

datum, otherwise any true axiom would be self-certifying in an unacceptable way (not to 

mention that the analogy with the natural sciences would be distorted beyond the point of 

being informative). For Russell and Whitehead, notably, this moral applies to arithmetic as 

well: the axioms are justified because they entail propositions such as ‘1 + 2 = 3’, not the 

other way round.  

 

The use of non-deductive methods in mathematics therefore tallies better with the Empiricist 

than the Euclidean Programme. To put it very roughly, mathematical justification is much 

more like scientific justification than traditionally imagined. At the very least, it has an 

important extrinsic component. It is then a short step to the idea that non-deductive evidence 

has an important role to play in mathematical justification, just as it does in science. Coming 

at it from the other direction, to recognise the important role this sort of evidence plays in 

mathematics is to chip away at the epistemological dimension of the empirical 

science/mathematics divide. Mathematics is much more like science than our philosophical 

forebears imagined. Just as in science, non-deductive justification has an important role to 

play.  

 

5. Justifying the consistency of mathematics as a whole 

Let’s now turn to an apparently unrelated question, whose connection to our main topic will emerge 

shortly. Set theory is regarded by many as a foundation for mathematics—though in what sense 

exactly remains a source of controversy. An incontrovertible fact is that almost all mathematics can 

be carried out in set theory. And we can prove the consistency of virtually all mathematical 

theories—arithmetic, analysis, geometry and so on—in set theory. (The consistency of a theory may 

here be understood as its not implying every sentence.21) If set theory were inconsistent, a proof of, 

say, the consistency of arithmetic in set theory would be cold comfort, since set theory would also 

prove that arithmetic is inconsistent—indeed, it would prove anything statable in its language. A set-

theoretic proof of arithmetic’s consistency is thus best understood as a relative consistency proof: it 

establishes the consistency of one theory (arithmetic) on the assumption that another (set theory) is 

consistent. To interpret such a proof as telling us that arithmetic is consistent, we need reason to 

think that set theory itself is consistent.  

 

But now a difficulty looms: we have no proof of this latter fact, that is, of set theory’s consistency. 

And this for a principled reason: by Gödel’s Second Incompleteness Theorem, if set theory is 

consistent then it cannot prove its own consistency. Of course, we can take our preferred system of 

set theory S and extend it to S+ and then proceed to prove the consistency of S within S+. But that 

                                                           
21 The exact sense of implication in question is not of great importance. 



only pushes the question back one stage: how do we convince ourselves that S+, our new ultimate 

theory, is consistent? By Gödel’s theorem again, we cannot do so in S+ (assuming S+ is consistent).  

 

(So far in section 5, we have assumed that set theory is the foundation of mathematics. But actually 

this is inessential. The question of consistency can be raised for any putative foundation for 

mathematics, e.g. category theory as opposed to set theory. And even if you think mathematics has 

no foundation, you still face the question of why we are justified in thinking mathematics as a whole 

is consistent. Everything said here can be easily reformulated to accommodate either of these 

alternative views.) 

 

The question is particularly pressing if you take all justification in mathematics to be deductive, i.e. 

to be given by proof and exhausted by proof. For, on that view, how on earth are we justified in 

believing set theory’s fundamental principles? The reply that an axiom has a zero-step proof from the 

axioms, though true, is hardly consoling. In any axiomatic system, the axioms are trivially provable, 

for systems consisting of true axioms and of false axioms alike. Any crank can put forward a hare-

brained mathematical ‘system’ and give a zero-step proof that each of its axioms is true. So how do 

we know that the axioms of our not hare-brained but trusted (we think) system are true? Or at least 

why are we justified in so thinking?  

 

Indispensabilists have an answer.22 We are justified in believing the axioms of mathematics as a 

whole—whatever exactly these are—because they are successfully and indispensably applied in 

science. Mathematical justification ultimately rests on scientific justification. This is the 

indispensabilist’s broad answer to the question of how axioms are justified. Plainly, though, the 

answer is indirect and holistic: to justify the thought that set theory is true, or even consistent, 

requires no less than a detour through the whole of science, or at least large parts of it. It would be 

better to combine this holistic justification with more direct evidence for the consistency of 

mathematics. As we have seen, this evidence apparently cannot be deductive; so it has to be non-

deductive. So we have here an important role for non-deductive evidence to play. Such evidence, if it 

exists, can be used to show that set theory (and hence mathematics as a whole) is consistent.  

 

Does such evidence exist? Most definitely. Maddy (1988) is a then state-of-the-art discussion of non-

deductive evidence for the axioms of set theory and their possible extensions. As such, it offers 

plenty of reasons for believing in set theory’s consistency. Chapter 8 of Paseau (forthcoming) is a 

shorter and less technical survey of some non-deductive evidence for the same.  

 

6. An Unorthodox Claim: Non-Deductive Knowledge of Mathematics 

                                                           
22 Indispensabilism is the philosophy of mathematics inspired by Quine and Putnam. See 

Paseau and Baker (2022) and Colyvan (2001) for more recent accounts. Here’s a formulation 

of the famous Indispensability Argument, taken from the first article:  

 

1. We ought rationally to be ontologically committed to those objects that are 

indispensable parts of our best scientific theories. 

 

2. Mathematical objects are an indispensable part of our best scientific theories. 

   

_____________________________________________________________ 

We ought rationally to be ontologically committed to mathematical objects. 

 



We have so far been concerned with non-deductive justification and evidence in mathematics. 

We end this article by considering a much more radical idea: that there can be non-deductive 

(non-testimonial) knowledge of mathematical propositions. This claim goes squarely against 

the way mathematicians speak, since mathematicians typically equate p’s being known with 

there being a proof of p.23 This is the quasi-universal, orthodox view. I am among the very 

few who dissent from it, because I believe that, in the best cases, non-deductive evidence can 

yield knowledge of a mathematical proposition (Paseau 2015). In this section, I shall present 

an argument for the unorthodox view, adapted from section 5 of Paseau (2015); my article 

contains several other such arguments.   

 

Epistemologists have given a good deal of general thought to knowledge. Not just 

mathematical, but empirical, scientific and moral knowledge, self-knowledge, knowledge of 

the past and the future, a priori and a posteriori knowledge, and so on. Ever since the 

publication of Gettier (1963), one particularly prominent concern has been to provide 

necessary and sufficient conditions for knowledge. Notoriously, none of the myriad proposed 

conditions has achieved consensus,24 although many have been thought to be along the right 

lines, or at least to cover an important range of cases. For brevity, call any analysis that has 

gained at least some traction in the literature a ‘right-track analysis’. (Some examples will 

shortly follow.)  

 

The argument for non-deductive knowledge of mathematics is that any right-track analysis 

falls into one of two categories. Either it allows that knowledge of mathematics may be 

obtained by non-deductive means; call this category Type A. Or it does not apply to 

knowledge of mathematics, so a fortiori does not privilege deductive, as opposed to non-

deductive, knowledge of mathematics; call this Type B. The underlying thought here is that if 

(non-testimonial) knowledge of a mathematical proposition could only be deductively 

acquired, at least some right-track analyses would have that implication, when supplemented 

with some generally accepted principles.  

 

So let’s take a look at a few accounts of knowledge. The first and most venerable one is that 

knowledge is justified true belief. As Gettier (1963) notes, Plato in the Theaetetus and the 

Meno may have respectively considered and proposed such an account. This account is of 

Type A: it allows for non-deductive knowledge of mathematics, since a mathematical 

proposition may be justified non-deductively. For example, the evidence behind GC (some of 

which we encountered in section 2) justifies our belief in it.  

 

An influential revised account was offered in Goldman (1967). Goldman suggested that a 

subject knows that p just when her true belief that p is causally connected to the fact that p. 

Whatever the merits of this account for other domains, it does not apply to mathematics, 

since the subject matter of mathematics does not have causal powers: the number 53 itself 

does not causally impinge on our senses any more than a Banach space or an ordered field do. 

Goldman’s ‘causal analysis’ of knowledge is therefore of Type B. Goldman himself could not 

have been clearer on this point, declaring in the first paragraph of his famous article that 

‘[m]y concern will be with knowledge of empirical propositions only, since I think that the 

                                                           
23 For mathematical p, obviously. In my (2015), I argue that gainsaying mathematicians is 

much less problematic when they are talking not about mathematics but about its 

epistemology, as in this case.  
24 For general reasons lucidly discussed in Zagzebski (1994).  



traditional analysis is adequate for knowledge of nonempirical truths [including those of 

mathematics]’ (Goldman 1967, p. 357).  

 

Now that we have seen how this sort of argument goes, it can be extended to other post-

Gettier right-track analyses more swiftly. These typically supplement the first two clauses, 

that p is true and S believes that p, with a third condition that aims to improve upon the 

justification clause. Here is a sample, along with their classification:   

 

• The belief that p is not inferred from a false lemma (Clark 1963).  

Of Type A, since non-deductive evidence for p need not contain a false lemma. 

 

• The justification that p must not essentially rest on a false assumption (Harman 

 1973). Similar to the previous: of Type A, since non-deductive justification for p need 

 not, and in many usual cases will not, essentially rest on a false assumption.  

 

• There is a law-like connection between the fact that p and the belief that p 

 (Armstrong 1973). Armstrong intended it to cover empirical cases only, so this 

 analysis is of Type B.  

 

• The belief that p is produced by a reliable process not undermined by the   

subject’s cognitive state (Goldman 1976). Of Type A, since non-deductive 

 evidence can be the product of a reliable process.  

 

• If it were the case that not-p then the subject wouldn’t believe p (Nozick 1981).25 

To apply this, note that mathematical propositions are usually thought of as necessary. 

The standard account of counternecessaries in the literature takes them to all be true, 

in which case Nozick’s analysis is of Type A—it allows for non-deductive knowledge 

of mathematics.26   

 

Even if we reject the standard account of counternecessaries, it seems that Nozick’s 

account is of Type A. For example, we are liable to think that if the Riemann 

Hypothesis were false, we would lack the evidence we in fact possess for it, and 

consequently that we wouldn’t believe it. Similarly, if the perpendicular bisectors of 

Euclidean triangles did not meet in a point then trying to confirm this fact 

empirically—by drawing the lines with the utmost care on a plane surface—would 

not lead us to conclude that they do. If a particular number were composite rather than 

prime then primality test evidence would be different. And so on.  

 

 • The subject could not easily have falsely believed that p (this is the Safety Condition 

 discussed in e.g. Williamson 2000). This condition can easily be failed by true 

 mathematical beliefs, e.g. if they are the product of happenstance or of an unreliable 

                                                           
25 Ignoring Nozick’s other condition, which is problematic and does not affect the moral. 

More generally, in presenting these accounts, I have omitted qualifications, refinements, and 

extra clauses that do not affect the general point. 
26 The standard accounts are derived from Stalnaker (1968) and Lewis (1973). As Baker 

(2021) notes, following an observation by Ralph Wedgwood, counternecessaries are usually 

known as ‘counterpossibles’. If the analogy with ‘counterfactual’ is to be exact, however, 

‘counterpossibles’ should be known as counternecessaries. See Baker (2021) for more on 

these types of conditionals, whatever exactly they should be called.  



 method that happens to be right in this instance.27 This condition is of Type A: the 

 best forms of non-deductive evidence satisfy it.  

 

Observe in passing that the best inductive mathematical cases are quite unlike lottery cases. 

In lottery cases, as described above, the subject’s evidence for p is insensitive to whether p is 

true. She has the same evidence and belief in the scenario in which she holds the winning 

ticket as in the N – 1 nearby scenarios in which she holds a losing ticket. Not so for the best 

cases of non-deductive evidence in mathematics.  
 

Evidently, this is just a sample from a vast post-Gettier literature. But it includes most if not 

all the leading candidates; and none of them was chosen with a view to confirming the ‘either 

Type A or Type B’ moral. In any case, broadening the range of examples would not alter the 

moral. General epistemology has not brought to light a reasonably popular condition that 

excludes a non-deductive (non-testimonial) route to knowledge of mathematical propositions. 

No right-track analyses allow deductive routes to mathematics whilst ruling out non-

deductive ones. As a prominent field of inquiry, mathematics is, and should be, a test case for 

general epistemology. If the only (non-testimonial) route to knowledge of a mathematical 

proposition were deductive, you would expect some prominent general accounts of 

knowledge to have this consequence. That they don’t supports the idea that such knowledge 

can be acquired non-deductively.  

 

Of course, this is not a knock-down argument for the conclusion that we can know a 

mathematical proposition without proof.28 It is one of many arguments and considerations 

supporting that idea. To further strengthen it, one ought to consider those as well. A fuller 

treatment would examine not just these but the conservative backlash as well, if we may call 

it that. Lange (2022), for example, is an interesting recent article that tries to support the 

standard view by proposing a necessary condition on knowledge that Lange believes (i) is 

independently motivated, and (ii) rules out non-deductive knowledge of mathematics.  

 

A closely related point worth stressing is that, at least in some cases, there is a gap between 

strong justification for one’s true belief that p and knowledge that p. Gettier’s refutation of 

the ‘JTB’ analysis of knowledge showed that justification is not enough for knowledge, even 

when the belief is true.29 In fact, one can go further: one of the lessons of so-called lottery 

cases is that even justification for a true belief that falls short of complete certainty by a tiny 

but positive margin may not be enough for knowing it. In a fair lottery in which there are N 

tickets, my chances of winning are 1/N, which for large N is very small, and I may truly 

believe that I don’t hold the winning ticket; but—and this is the key point—I don’t know that 

my ticket won’t win.  

 

What do the lottery cases teach us? The fact that a mathematician’s non-deductive 

justification for her belief in the true mathematical proposition p is extremely strong does not, 

                                                           
27 For instance, suppose I believe that 13 + 53 + 33 = 153 because I recognise it as an instance 

of the generalisation a3 + b3 + c3 = abc, where abc is written in decimal notation, which I 

believe to be true. The generalisation is patently false, but this instance of it happens, quite 

fortuitously, to be correct. 
28 Which, to repeat, is to be understood in the strong sense that no one has a proof of it. As 

stressed, we often know p testimonially without being able to prove p ourselves.  
29 Nagel (2014, p. 58) observes that discussion of so-called Gettier cases may be found in 

Indo-Tibetan philosophy that predates Gettier by centuries. 



in itself, show that she knows that p. Something more is needed, at least in general. Clearly, 

though, not all epistemic situations are similar to lottery cases, and one should not 

overgeneralise from them. Their moral is not that extremely strong justification can never 

transmute true belief into knowledge; only that it sometimes fails to do so.  
 

Let’s take stock. Suppose you think, like I do, that non-deductive justification can yield 

knowledge in mathematics. Then you have a job to do. It’s not enough for you to simply 

point out that in many such cases, the evidence for p is overwhelmingly strong. You must 

produce reasons for thinking that, at least in some cases, it’s strong enough for knowledge. 

The argument in this section that nothing in general epistemology rules it out is just one 

example of an argument you could give. There are many others. 

 

7. Conclusion  

The present article has looked at some of the more philosophical aspects of the role non-

deductive evidence plays in mathematics. The role is an important one, and its contours have 

only started to be investigated in detail in recent decades. There is more philosophical work 

to be done to understand it better.    



References 

D.M. Armstrong (1973), Belief, Truth, and Knowledge, Cambridge University Press. 

A. Baker (2007), ‘Is There a Problem of Induction for Mathematics?’, in M. Leng, A. 

 Paseau & M. Potter (eds), Mathematical Knowledge, Oxford University Press, pp. 59–

 73.  

A. Baker (2021), ‘Counterpossibles in Mathematical Practice: The Case of Spoof Perfect 

 Numbers’, in B. Sriraman (ed.), Handbook of the History and Philosophy of 

 Mathematical Practice, Springer, online.  

R. Chisholm (1957), Perceiving: A Philosophical Study, Cornell University Press.  

M. Clark (1963), ‘Knowledge and Grounds: A Comment on Mr. Gettier’s Paper’, Analysis 

 24, pp. 46–8. 

J. Franklin (2021a), ‘Bayesian Perspectives on Mathematical Practice’, in B. Sriraman 

 (ed.) Handbook of the History and Philosophy of Mathematical Practice , Springer, 

 online.   

J. Franklin (2021b), ‘Let No-One Ignorant of Geometry...’: Mathematical Parallels for 

 Understanding the Objectivity of Ethics, The Journal of Value Inquiry, vol. and pp. 

 tbc. 

G. Frege (1884/1974), Die Grundlagen der Arithmetik, transl. as Foundations of Arithmetic 

 by J.L. Austin, Blackwell. 

E. Gettier (1963), ‘Is Justified True Belief Knowledge?’, Analysis 23, pp. 121–3. 

A. Goldman (1967), ‘A Causal Theory of Knowing’, The Journal of Philosophy 64, pp. 357–

 72.  

A. Goldman (1976), ‘Discrimination and Perceptual Knowledge’, Journal of Philosophy 73, pp. 

 771–91.  

S. Haack (1976), ‘The Justification of Deduction’, Mind 85, pp. 113–119.  

I. Lakatos (1962), ‘Infinite Regress and Foundations of Mathematics’, in J. Worrall and G. 

 Currie (eds), Mathematics, Science and Epistemology, Cambridge University Press, pp. 3–23. 

M. Lange (2022), ‘Inference to the Best Explanation is an Important Form of Reasoning in 

 Mathematics’, The Mathematical Intelligencer 44, pp. 32–8.  

M. Lange (2022), ‘Why is Proof the Only Way to Acquire Mathematical Knowledge?’, The 

 Australasian Journal of Philosophy (forthcoming).  

D.K. Lewis (1973), Counterfactuals, Blackwell.  

P. Maddy (1988), ‘Believing the Axioms’, Journal of Symbolic Logic 53: 481–511, 736–764.  

B. Mazur (2014), ‘Is it Plausible?’, The Mathematical Intelligencer 36, pp. 24–33.  

J. Nagel (2014), Knowledge: A Very Short Introduction, Oxford University Press.  

P. Ochem & M. Rao (2012), ‘Odd Perfect Numbers are Greater than 101500’, Mathematics 

 of Computation 81, pp. 1869–1877. 

A.C. Paseau (2011), ‘Proving Induction’, Australasian Journal of Logic, pp. 1–17. 

A.C. Paseau (2008), ‘Justifying Induction Mathematically: Strategies and Functions’, 

 Logique et Analyse 203 (2008), pp. 263–9.  

A.C. Paseau (2015), ‘Knowledge of Mathematics without Proof’ (2015), The British Journal 

 for the  Philosophy of Science 66, pp. 775–99.   

A.C. Paseau and A.R. Baker (2022), Indispensability, Cambridge University Press.  

A.C. Paseau and W. Wrigley (2023), The Euclidean Programme, Cambridge University 

 Press.  

A.C. Paseau (forthcoming), What is Mathematics About?, Oxford University Press.  

G. Pólya (1956), Mathematics and Plausible Reasoning, Volume 1: Induction and Analogy, 

 Princeton University Press.  



G. Pólya (1968), Mathematics and Plausible Reasoning, Volume 2: Patterns of Plausible 

 Inference, Princeton University Press.  

B. Russell (1907), ‘The Regressive Method of Discovering the Premises of  

Mathematics’, in D. Lackey (ed.), Essays in Analysis, Braziller, pp. 272–83. 

R. Stalnaker (1968), ‘A Theory of Conditionals’, in Studies in Logical Theory, N. Rescher 

 (ed.), Blackwell, pp. 98–112. 

A.N. Whitehead and B. Russell (1910/1962), Principia Mathematica to *56, Cambridge 

 University Press.  

T. Williamson (2000), Knowledge and Its Limits, Oxford University Press. 

L. Zagzebski (1994), ‘The Inescapability of Gettier Problems’, The Philosophical Quarterly 

 44, pp. 65–73. 
 


